Very Simple LLM

A minimal API to make LLMs do what you actually need

Our api makes mainstream llms very simple to use. To get json output:

POST /json
curl -X POST "https://verysimplellm.aitida.com/json" \
-H "Content-Type: application/json" \
-H "Authorization: your-model-provider-key" \
-d '{
  "model": "anthropic/claude-sonnet-4-20250514",
  "prompt": "Please analyze the following user review: \"This coffee maker is absolutely amazing! It brews perfect coffee every morning and the design looks great in my kitchen. The only minor issue is that it takes a bit longer to brew than expected, but the quality makes up for it. Highly recommend!\"",
  "json_schema": {
    "type": "object",
    "properties": {
      "title": {
        "type": "string",
        "description": "A brief title summarizing the review"
      },
      "sentiment": {
        "type": "number",
        "description": "Sentiment score from -1 (negative) to 1 (positive)"
      },
      "category": {
        "type": "string",
        "enum": ["electronics", "home", "food", "clothing", "books", "other"],
        "description": "Product category"
      }
    },
    "required": ["title", "sentiment", "category"],
    "additionalProperties":false
  }
}'
const response = await fetch('https://verysimplellm.aitida.com/json', {
method: 'POST',
headers: {
  'Content-Type': 'application/json',
  'Authorization': 'your-model-providers-key'
},
body: JSON.stringify({
  model: 'anthropic/claude-sonnet-4-20250514',
  system_prompt: 'Only output required fields.',
  prompt: 'Please analyze the following user review: "This coffee maker is absolutely amazing! It brews perfect coffee every morning and the design looks great in my kitchen. The only minor issue is that it takes a bit longer to brew than expected, but the quality makes up for it. Highly recommend!"',
  json_schema: {
    type: 'object',
    properties: {
      title: {
        type: 'string',
        description: 'A brief title summarizing the review'
      },
      sentiment: {
        type: 'number',
        description: 'Sentiment score from -1 (negative) to 1 (positive)'
      },
      category: {
        type: 'string',
        enum: ['electronics', 'home', 'food', 'clothing', 'books', 'other'],
        description: 'Product category'
      }
    },
    required: ['title', 'sentiment', 'category'],
    additionalProperties:false
  }
})
});

const data = await response.json();
console.log(data);
import requests

response = requests.post('https://verysimplellm.aitida.com/json',
headers={
  'Content-Type': 'application/json',
  'Authorization': 'your-model-providers-key'
},
json={
  'model': 'anthropic/claude-sonnet-4-20250514',
  'system_prompt': 'Only output required fields.',
  'prompt': 'Please analyze the following user review: "This coffee maker is absolutely amazing! It brews perfect coffee every morning and the design looks great in my kitchen. The only minor issue is that it takes a bit longer to brew than expected, but the quality makes up for it. Highly recommend!"',
  'json_schema': {
    'type': 'object',
    'properties': {
      'title': {
        'type': 'string',
        'description': 'A brief title summarizing the review'
      },
      'sentiment': {
        'type': 'number',
        'description': 'Sentiment score from -1 (negative) to 1 (positive)'
      },
      'category': {
        'type': 'string',
        'enum': ['electronics', 'home', 'food', 'clothing', 'books', 'other'],
        'description': 'Product category'
      }
    },
    'required': ['title', 'sentiment', 'category'],
    'additionalProperties':False
  }
}
)

print(response.json())

Returns

{
  "json": {
    "title": "Excellent Coffee Maker with Minor Brewing Speed Issue",
    "sentiment": 0.8,
    "category": "home"
  }
}

Test It

Model Codes

Supports any model LiteLLM supports, such as OpenAI, Anthropic, Google and more. Grab model identifiers from https://docs.litellm.ai/docs/providers

Authorization header

Put your LLM providers Api Key into the Authorization header. We dont store this anywhere ever.

Source Code

View the source code at https://github.com/joshp-f/verysimplellm